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Abstract. We consider virtual circuit routing protocols with an objective of minimizing energy6
in a network of components that are speed scalable, and that may be shutdown when idle. We assume7
the standard model for component power: the power consumed by a component with load (speed) s8
is σ + sα where σ is the static power and the exponent α > 1. We obtain a very simple O(logα k)-9
approximation algorithm for multicommodity routing where k is the number of demand pairs. This10
improves upon previous results by several logarithmic factors. The key step in our algorithm is a11
random sampling technique that we call hallucination, which is reminiscent of the Sample-Augment12
framework for Buy-at-Bulk problems, and sampling in cut-sparsification algorithms.13

We also consider the online setting of the problem, where demand pairs arrive over time. We14
show that our offline algorithm naturally extends to the online setting, and obtain a randomized15
competitive ratio of Õ(log3α+1 k), which is the first non-trivial bound. The analysis of this algorithm16
involves the study of priority multicommodity flows, where edges and demand-pairs have priorities17
and each demand-pair must route its flow only on edges of lower priority. We establish a poly-18
logarithmic flow-cut gap for these priority flows, which we believe is of independent interest.19

Finally, we show how our technique can be used to achieve a randomized (O(logm), O(log2m))20
bi-criteria competitive algorithm for the uniform capacitated network design problem, where m is21
the number of edges. Here, every edge has a cost ce and uniform capacity q, and the goal is to choose22
the minimum cost subgraph that can support the given multicommodity demand. This is the first23
online algorithm for this problem. In fact, our approach also improves prior results in the offline24
setting by several logarithmic factors.25
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1. Introduction. According to the US Department of Energy [1], data net-28

works consume more than 50 billion kWH of energy per year, and a 40% reduction29

in wide-area network energy is plausibly achievable using network components that30

dynamically adjust their speed to be proportional to demand. Virtual circuit rout-31

ing, in which each connection is assigned a reserved route in the network with a32

guaranteed bandwidth, is used by several network protocols to achieve reliable com-33

munication [32]. In this paper we consider virtual circuit routing protocols, with an34

objective of minimizing energy, in a network with speed-scalable edges.35

The Energy-Efficient Routing Problem (EERP). The input consists of an undi-36

rected network G = (V,E), scalar non-negative multipliers on edges ce, and a common37

energy cost function f(·) defined as38
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2 ANTONIADIS ET AL.

(1.1) f(x) =

{
0 if x = 0
σ + xα if x > 0 .

.39

We are also given a collection of k requests of the form (si, ti, di), where for each
i ∈ [k] = {1, 2, · · · k}, si ∈ V and ti ∈ V need to be connected by a flow path with
dedicated capacity/bandwidth of di ≥ 1 (called a virtual circuit). The objective is to
find the flow paths Pi for each request i to minimize the overall energy cost of the
routing defined as ∑

e∈E
ce · f

( ∑
i:e∈Pi

di

)
.

We call this problem the energy efficient routing problem (EERP), and remark that40

this is precisely the problem formulation studied in [4, 3, 11]. In the offline setting,41

all requests are known in advance before selecting paths. In the more realistic (and42

harder) online setting, requests arrive over time and the algorithm needs to select a43

virtual circuit Pi for each request immediately upon arrival. We consider both the44

offline and online settings in this paper.45

Why this energy function f(·)? Even though the model is by now standard, (see,46

e.g., [3]), we provide a brief motivation. Speed-scalable network components (edges,47

in our case) are associated with a power-rate curve f(x). This function measures the48

power consumption as a function of its speed x. The speed of a component is assumed49

to be proportional to the traffic load passing through the component, which in our50

case is the total bandwidth reserved on this edge.51

In equation (1.1) above, the parameter σ is the static power. That is, the power52

used when the component is turned on but idle. The static power can only be saved53

by turning the component off, which only happens when its load/speed is 0. The term54

xα is the dynamic power of the component as it varies with the speed, or equivalently55

load, of the component. Here α > 1 is a parameter specifying the energy inefficiency56

of the components, as speeding up by a factor of s increases the energy used per57

unit computation/communication by a factor of sα−1. The value of α is in the range58

[1.1, 3] for essentially all technologies [13, 41]. As in prior work [3, 11], we will assume59

that all components in the network are homogenous: so the parameters α and σ are60

uniform across all network components.61

Relation to Buy-at-Bulk Network Design. The energy efficient routing problem62

has some similarity to the classic buy-at-bulk network design problem [8, 39]. The63

difference is that buy-at-bulk involves a concave edge cost-function instead of f as64

defined in (1.1). Note that if the cost function is concave, then it is always better65

to aggregate flow as much as possible. Indeed, the idea of aggregating flows forms66

the basis of all known algorithms for the buy-at-bulk problem. There are offline and67

online algorithms for buy-at-bulk with poly-logarithmic ratios under both uniform68

and non-uniform edge-costs [8, 19, 15].69

In contrast, the edge cost function (1.1) is not concave (it is not convex either).70

In particular, the static power term in function f is concave, whereas the dynamic71

power term is convex. This requires an algorithm to balance the two opposing goals72

described below.73

• Effect of the static power. The static power is zero when the flow x = 074

and σ when x > 0. As this is concave, it is best to aggregate flow. Indeed,75
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ENERGY EFFICIENT VIRTUAL CIRCUIT ROUTING 3

an optimal solution here is to route all flow over a minimum cost Steiner76

forest [2, 23] that connects the corresponding request-pairs. There is also an77

O(log n)-competitive online algorithm for Steiner forest [27].78

• Effect of the dynamic power. The dynamic power is xα which is convex. In79

this case, it is better to dis-aggregate flow as much as possible. The greedy80

algorithm that routes each request along a path of minimum increase in cost81

tends to balance the flows on different edges, and is known to achieve an82

O(1)-competitive ratio for any constant α [6, 24].83

Previous work by Andrews et al. [3] showed that these competing forces can84

be somewhat balanced by giving a polynomial-time poly-logarithmic approximation85

algorithm for EERP. In this paper, we provide a simpler and better approximation86

algorithm that also extends to the online setting and other related problems.87

1.1. Our Results. We present three main results in this paper, starting with88

the offline EERP problem.89

Theorem 1.1. There is an efficient randomized O(logα k)-approximation algo-90

rithm for the energy efficient routing problem.91

This algorithm improves over the previously known approximation algorithm from [3]92

in the following ways: (a) the approximation ratio is better by several logα k factors,93

(b) the algorithm is itself very simple to describe and implement, and (c) the analysis94

is also considerably simpler, with the only real “hammer” being the classic flow-cut95

gap for multicommodity flow. Moreover, our techniques extend naturally to the online96

setting, which is our second main result.97

Theorem 1.2. There is an efficient randomized Õ(log3α+1 k)-competitive online98

algorithm for the energy efficient routing problem.99

This is the first non-trivial online algorithm for this basic energy minimization100

problem. Previous results in the online setting could only handle the single-commodity101

special case [11].102

Finally, we consider the seemingly unrelated problem of capacitated network de-103

sign (CapND). Here, we are given a graph G = (V,E) with n vertices and m edges,104

where each edge e ∈ E is associated with a cost ce ≥ 0 and uniform capacity of q ≥ 0.105

There are k requests of the form (si, ti, di) as in EERP. The goal is to choose a min-106

imum cost subgraph H ⊆ E that can support the multicommodity flow requirement107

of the requests (concurrently). In the online version, requests arrive online and the108

algorithm must buy edges irrevocably to support the evolving flow requirements.109

Theorem 1.3. There is a randomized (O(logm), O(log2m)) bi-criteria compet-110

itive online algorithm for uniform capacitated network design, i.e., with high proba-111

bility, the solution costs O(logm) times the optimum and violates edge capacities by112

factor O(log2m).113

Again, this is the first non-trivial online algorithm for CapND. In fact, this approach114

also improves significantly over the offline algorithm in [3] which had a (large) poly-115

logarithmic bi-criteria approximation ratio. In the conference version [5] of this paper,116

we described an offline algorithm with a slightly better (O(logm), O(logm)) bi-criteria117

approximation ratio. Here, we only focus on the (more general) online setting.118

1.2. Our Techniques. As discussed above, any algorithm for EERP needs to119

balance the effects of aggregating and dis-aggregating flows. Intuitively, when the120

static power is larger than the dynamic power (i.e. σ > xα where x is the flow on an121

edge) then we want to aggregate flows. On the other hand, when the dynamic power is122
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4 ANTONIADIS ET AL.

larger (i.e. σ < xα) then we want to dis-aggregate flows. This suggests the approach123

of (i) aggregating demands until the total demand exceeds the threshold q := σ1/α,124

and then (ii) routing these “composite demands” in a dis-aggregated manner. Indeed,125

this is the approach used in [3]. We use a different approach: instead of explicitly126

aggregating demands, we use random sampling of the requests to help identify edges127

with large flow.128

For simplicity, consider the case when all demands are unit. In this case, our129

algorithm proceeds as follows. First, the algorithm selects an approximate minimum130

cost Steiner forest GS to ensure minimal connectivity between all request-pairs. Sec-131

ond, each request-pair, with probability O(log k)
q , hallucinates that it wants to route q132

units of flow instead of one.1 When every demand is at least q, the edge costs (1.1)133

are always dominated by the dynamic power: so we can use existing algorithms [6, 24]134

for minimizing just the dynamic power. This yields another subset GH of edges, i.e.135

all edges used in the routing of hallucinated demands. Finally, we route all the orig-136

inal (unit) demands on the subgraph GS ∪ GH so as to minimize just the dynamic137

power: here we use the algorithm from [6, 24] again. The key steps in the analysis138

are in showing that (i) the hallucinated demands can be routed at low cost (this is a139

simple randomized rounding argument) and (ii) the original demands can be routed140

at low cost on the chosen subgraph GS ∪ GH (this uses results on cut-sparsification141

and flow-cut gaps).142

The hallucination technique is rather similar to the Sample-Augment frame-143

work [25] for solving Buy-at-Bulk type problems. This is perhaps surprising because in144

Buy-at-Bulk, the cost on edges is purely concave, whereas in our case the cost is con-145

vex after the jump at 0. The similarities stop there, as the analyses are very different146

for the two problems: our analysis more closely resembles those of cut-sparsification147

algorithms [29].148

A striking benefit of this simple offline algorithm is that it directly extends to the149

online setting. Indeed, there are good online algorithms for both Steiner forest [27]150

and dynamic-power minimization [6, 24], which can be used directly. The online151

algorithm’s analysis however is considerably more involved than the offline case, and152

we believe that the techniques introduced here are of independent interest. The major153

difference (compared to the offline setting) is that the subgraph GS ∪ GH , which is154

used in actually routing the demands, is built incrementally over time. Therefore, we155

are faced with a non-standard multicommodity flow problem, that we call priority156

multicommodity flow. Here, each edge comes with a priority (indicative of the time157

when it was chosen by our online algorithm), and each request also comes with a158

priority (indicative of its arrival time), and a request can only use edges with priority159

lower than or equal to itself. So the key question we are interested in is: under what160

conditions is there a good concurrent priority multicommodity flow? To this end, we161

introduce the notions of priority-cuts and prefix-sparsity, and establish relationships162

between these quantities and priority multicommodity flows. In particular, we show163

that the values of priority multicommodity flow, priority-cut and prefix-sparsity are164

all within a poly-logarithmic factor of each other. In proving these results, we use a165

variant of region growing [33, 21] as well as new charging arguments.166

Finally, we show that the hallucination approach also works for the CapND prob-167

lem. Indeed, the relevant sampling parameter q for CapND is the uniform edge ca-168

1We assume here that q = ω(log k), so the hallucination probability is well-defined. The case
q = O(log k) is much easier because the static power is always O(logα k) times the dynamic power,
which means we can directly use existing algorithms [6, 24] for minimizing the dynamic power.
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pacity (instead of σ1/α in the EERP algorithms). The CapND instance consisting of169

hallucinated demands (each of q units) can be solved online using an existing algo-170

rithm for min-cost circuit routing [9]. Moreover, the analysis of this online algorithm171

is very similar to the offline EERP algorithm.172

1.3. Related Work. The energy efficient routing problem was introduced in173

[4] and a poly-logarithmic approximation algorithm was obtained in [3]. It is also174

known (using the relationship to buy-at-bulk) that EERP is hard to approximate175

to within an Ω(log1/4−ε n) factor [3]. The high-level algorithmic strategy in [3] is176

to aggregate the flow within suitably defined groups, such that each group contains177

a total crossing demand of roughly q. Then, they find a low-cost routing across178

groups. Roughly, the flow paths going across groups carry large loads, so the dynamic179

power dominates; whereas, flow paths within each group carry small loads, so the180

static power dominates. However, the algorithm design to achieve such a routing as181

well as its analysis in [3] are fairly complicated and rely on various tools: the well-182

linked decomposition of Chekuri-Khanna-Shepherd [20], the construction of expanders183

via matchings of Khandekar-Rao-Vazirani [30], and edge-disjoint routings in well-184

connected graphs due to Rao-Zhou [37]. Moreover, the exponent of logα k in the185

poly-log approximation ratio is sufficiently large that it was not explicitly calculated186

in [3].187

Bansal et al. [11] considered EERP in the case of a common source vertex s for188

all request-pairs, that is all si = s. Applications for a common source vertex include189

data collection by base stations in a sensor network, and supporting a multicast190

communication using unicast routing. In this single-commodity setting, [11] gave an191

O(1)-approximation algorithm. The algorithm and analysis are considerably easier192

than [3] because, after aggregation into groups, all the flow is going to the same place.193

[11] also gave an O(log2α+1 n)-competitive randomized online algorithm, by giving a194

procedure for forming groups in an online fashion.195

The uniform CapND problem was also studied in [3], where a poly-logarithmic196

bicriteria approximation algorithm was obtained. In fact, [3] used this result as a197

sub-routine for their overall algorithm for EERP. In this paper, we show that we can198

use the hallucination approach to get a simpler and improved algorithm for CapND199

which also extends to the online setting.200

A related problem to the CapND problem we consider is capacitated survivable201

network design [14, 17, 26], where the requirement is to compute a minimum cost202

subgraph H which satisfies the flow requirement individually for each demand rather203

than concurrently. These results are incomparable to those for CapND.204

Finally, priority versions of a number of classic problems have been studied in205

approximation algorithms, e.g. priority Steiner tree [18] and priority covering integer206

programs [16]. We note however that our focus in the priority multicommodity flow207

problem is structural (bounding its flow-cut gap) rather than algorithmic.208

2. Preliminaries. We begin by recalling the problem statement. The energy209

efficient routing problem (EERP) is defined on an undirected multi-graph G = (V,E)210

with |V | = n vertices and m edges. Each edge e is associated with a scaling factor211

ce ≥ 0. There are k request-pairs, where the ith pair specifies a source si, a destination212

ti and an integer demand di ≥ 1. We need to route each request-pair unsplittably213

so as to minimize the objective
∑
e∈E ce · f(`e) where `e denotes the flow (i.e. total214

demand routed) on edge e and function f is as defined in (1.1).215

In the analysis we will also be concerned with splittable (fractional) routings,216

where the demand of each request may be satisfied using multiple paths. Unless217
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specified otherwise, any routing in solutions we seek is assumed to be unsplittable.218

The power incurred on any edge e ∈ E is naturally split into two parts: (i) the219

static power which is ceσ if it routes any flow or 0 otherwise, and (ii) the dynamic220

power which is ce`
α
e where `e denotes the total demand routed on edge e ∈ E. The221

static (resp. dynamic) power of a routing is the sum over all edges of the static (resp.222

dynamic) power.223

As mentioned earlier, a useful parameter throughout the paper is q := σ1/α, which224

is the amount of flow on an edge for which the static and dynamic power are equal.225

We use Opt to denote the total power of a fixed optimal solution. We assume that226

α ≥ 1 is a constant, so any function of α is just O(1).227

Moreover, we assume that q = ω(log k), as otherwise it is easy to obtain an228

O(logα k)-competitive online algorithm for EERP. Indeed, when q = O(log k), we229

have σ = O(logα k) and the static power of any routing is at most O(logα k) times the230

dynamic power (recall that all demands are integer). In this case, we could simply231

optimize for the dynamic power and obtain an approximation factor that is worse232

by a factor of O(logα k). As there are O(1)-competitive online algorithms for dy-233

namic power minimization (see below), we would then immediately get an O(logα k)-234

competitive online algorithm for EERP for the case q = O(log k).235

Dynamic Power Minimization (DynPM). A crucial sub-routine in our algorithms236

is the so-called waterfilling algorithm [24] for the problem of minimizing just the237

dynamic power of the routing. The input to DynPM is the same as for EERP. We238

need to route each request-pair unsplittably so as to minimize the dynamic power239

objective
∑
e∈E ce(`e)

α where `e denotes the total demand routed on edge e. The240

waterfilling algorithm is a natural online greedy algorithm for this problem, which241

routes the demand of each request along the path that results in the smallest increase242

in the objective. An important feature of this algorithm is that we can also implicitly243

specify a subset Pi of allowed si − ti paths for each request (si, ti, di). This will be244

useful in the online EERP algorithm, where the underlying graph is built incrementally,245

and each request can only use the edges present at the time of its arrival.246

Online Waterfilling Algorithm for DynPM.
When request i arrives:

1. Let `e denote the current load on each edge e in graph G.
2. Choose si − ti path Pi ∈ Pi in G to minimize

∑
e∈Pi ce ((`e + di)

α − `αe ).

247

Theorem 2.1. Given any graph G = (V,E), and requests (si, ti, di) with a set of248

allowed paths Pi, the waterfilling algorithm is O(αα)-competitive for the objective of249

minimizing the total dynamic power.250

In all our applications of Theorem 2.1, each set Pi (allowed si− ti paths) consists251

of all si − ti paths in some given subgraph of G. Note that in this case, the min-cost252

path Pi ∈ Pi in Step 2 above can be computed in polynomial time by running any253

shortest path algorithm on the given subgraph.254

For the case where Pi is the set of all si-ti paths in G, [24] proved Theorem 2.1255

using a dual-fitting framework. Previously, [10] used a potential function based frame-256

work to prove a similar result in the special case of the load balancing problem. It257

is not hard to adapt these existing analyses to our setting where each request also258

specifies a set of allowed paths. For completeness, we give a proof of Theorem 2.1 in259

Appendix A using the approach from [10].260

3. Offline Algorithm for EERP. In this section we give a polynomial time261

O(logα k)-approximation algorithm for EERP, thereby proving Theorem 1.1. As men-262
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tioned in Section 2 we may assume that q = ω(log k): this makes the algorithm and263

analysis simpler. Below we use λ = O(log k) where the constant term will be set later264

such that λ
q ≤ 1. We also assume that each demand di ≤ q: again this is because265

demands larger than q can be routed using the algorithm for minimizing just dynamic266

power, and combining the two solutions will only incur an extra multiplicative factor267

of 2α in the routing cost.268

Our overall algorithm comprises two stages. In the first stage (steps 1 and 2269

below) we decide which edges to power on or “buy” and incur the static cost. In270

the second stage (step 3 below) we route all the requests using the bought edges, to271

minimize just the dynamic power of the routing.272

Offline Algorithm Description.
1. Constructing the Steiner backbone GS. Solve the Steiner forest instance
on graph G = (V,E) with edge-costs {ce : e ∈ E} and pairs {(si, ti)}ki=1 using the
2-approximation algorithm from [2, 23]. Let GS denote the resulting solution.
2. Constructing the Hallucination backbone GH . Each request i ∈ [k]
independently “hallucinates” a demand of q ·Bi units, where Bi ∼ Binomial(di,

λ
q ).

Let Ihal denote the resulting (random) instance of DynPM on graph G and the
hallucinated demands. Run the waterfilling algorithm (Theorem 2.1) by feeding
the requests in Ihal in an arbitrary order, with Pi being the set of all si-ti paths
in G. Let H denote the resulting unsplittable routing and let GH denote the
subgraph consisting of all edges used in H.
3. Routing on the backbone. Let Iact denote the DynPM instance on graph
GF = GS ∪ GH with all the original requests {(si, ti, di) : i ∈ [k]}. Feed the
requests of Iact to the waterfilling algorithm (Theorem 2.1) in any order to obtain
the final unsplittable routing R.

273

Note that the hallucinated flow H is used solely to determine which edges to274

consider for the final routing in step 3.275

3.1. Analysis. Let Opt denote the optimal cost of the EERP instance. The cost276

of the algorithm is bounded by the total static power of the backbone GF = GS ∪GH277

(from Steps 1 and 2) plus the total dynamic power of routing R (from Step 3).278

Static power of GS. The static power of any feasible EERP solution is clearly at279

least σ times the optimal Steiner forest cost. So, using the 2-approximation algorithm280

for Steiner forest [2, 23], it follows that the static power for the edges in GS is at most281

twice that in the EERP optimum, i.e. at most 2 · Opt.282

Static power of GH . The static power of the hallucination backbone GH is at283

most the dynamic power of the hallucinated flow H since every hallucinated request-284

pair routes at least q units of flow unsplittably in H. In Lemma 3.1 we show that285

the dynamic power (and hence static power) for the hallucinated flow is O(λα) · Opt286

using a simple probabilistic argument. A similar idea was used in [11] for the online287

single-commodity EERP.288

Dynamic power. In order to bound the dynamic power of our routing in Step 3,289

by Theorem 2.1 it suffices to prove that there exists a routing of low dynamic power290

in the subgraph GF . To this end, we assign each edge in the backbone GF a capacity291

q̂e equal to the amount of hallucinated flow routed on it in H, plus λq if it is in the292

Steiner backbone GS . Importantly, using the dynamic power of H, these capacities293

will satisfy
∑
e∈E ceq̂

α
e = O(λα) · Opt. Then we show (in Lemma 3.3) that the non-294

uniform sparsest cut (w.r.t the demands of all requests in the original instance) under295

these capacities is Ω(log k) with high probability: this uses a classic cut sparsification296
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result [29]. Next, using the O(log k) flow-cut gap for multicommodity flow [33, 34, 7],297

we obtain the existence of a fractional routing within the backbone GF that respects298

capacities c. Finally, in Lemma 3.5 we show by randomly rounding this fractional299

flow (as in [24]) that there exists an integral routing in GF with dynamic power O(1)300

times the dynamic power of the fractional routing.301

Lemma 3.1. The expected dynamic power of hallucinated flow H is O(λα) · Opt.302

Proof. Consider any fixed optimal EERP solution that routes each request i ∈ [k]303

along some path P ∗i . Let O denote the routing that sends the hallucinated demand304

q ·Bi along path P ∗i for each i ∈ [k]. We will show that the expected dynamic power305

of O is O(λα) · Opt. Combined with Theorem 2.1, it would follow that the expected306

dynamic power of the hallucinated flow H is at most O(λα) · Opt.307

We bound the expected dynamic power in O separately for each edge e ∈ E. Fix
an edge e and let K ⊆ [k] denote the requests whose optimal paths P ∗i use e. Let
N =

∑
i∈K di be the load on e in the optimal EERP solution; so the cost of edge e

in this solution is ce(σ + Nα). The load on edge e in O is M =
∑
i∈K q · Bi. Note

that we can write Bi =
∑di
j=1Xij where each Xij ∼ Bernoulli(λq ) independently. So

random variable M is the sum of N independent random variables that each take
value q with probability λ/q (and zero otherwise). Using Corollary B.3 with p = λ/q
and D = q , we obtain:

E[Mα] ≤ O(1)

(
λ

q
·N · qα + (

λ

q
·N · q)α

)
≤ O(λq) ·

(
Nqα−1 +Nα

)
.

Note that Nqα−1 ≤ max{N, q}α ≤ Nα + qα = Nα + σ. Combined with the above308

inequality, we obtain E[Mα] = O(λq) · (2Nα + σ), and so the cost of the edge e in H309

is O(λq) times the cost of edge e in the optimal EERP solution.310

Now summing over all edges e ∈ E and using linearity of expectations, we conclude311

that the expected dynamic power in O is at most O(λα) · Opt.312

Lemma 3.2. The expected static power of the backbone, GF is σ · E[
∑
e∈GF ce] =313

O(λα) · Opt.314

Proof. Observe that the static power of the backbone,

σ
∑
e∈GF

ce ≤ σ
∑
e∈GS

ce + σ
∑
e∈GH

ce ≤ 2Opt + σ
∑
e∈GH

ce

asGS is a 2-approximate Steiner forest. So the expected static power σ·E[
∑
e∈GF ce] ≤315

2Opt + σE[
∑
e∈GH ce]. It now suffices to bound σE[

∑
e∈GH ce] which is the expected316

static power of H. Note that if an edge has positive load in H then it has load at least317

q. So the static power of H is at most its dynamic power. Combined with Lemma 3.1318

we obtain σE[
∑
e∈GH ce] = O(λα) · Opt, which proves the lemma.319

It remains to bound the dynamic power of routing all demands in the backbone
GF . To this end, we assign a virtual capacity of qλ on all edges in GS , and for edges
in GH , we set the virtual capacity to be equal to the load e carries in H (which is at
least q). Note that if we show that there exists a flow which respects these capacities
routing all demands, then the dynamic power of such a routing would be at most
O(λα) times the static power of GS plus the dynamic power of GH , both of which are
bounded in the previous lemmas. Indeed, this is what we show by establishing good
bounds on the sparsity of the graph with these virtual capacities w.r.t. the demands
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of the request pairs. More formally, let {He : e ∈ E} denote the edge loads induced
by the routing H. Then we define the following edge capacities:

q̂e =

{
He if e ∈ GF \GS
He + λq if e ∈ GS , ∀e ∈ E.

Note that only edges in GF = GS ∪GH have nonzero capacity.320

Moreover, q̂αe ≤ 2α (Hα
e + λασ · 1e∈GS ), so we have:321

(3.1)
∑
e∈E

ceE[q̂αe ] ≤ 2α

(∑
e∈E

ceE[Hα
e ] + σλα ·

∑
e∈GS

ce

)
= O(λα) · Opt,322

where the last inequality uses (i) the static power of GS is σ ·∑e∈GS ≤ 2 · Opt and323

(ii) the expected dynamic power of H is
∑
e∈E ceE[Hα

e ] = O(λα) ·Opt by Lemma 3.1.324

Now we turn our attention to establishing lower bounds on the graph sparsity.325

For an undirected graph G = (V,E) and subset S ⊆ V , we use the standard notation326

δG(S) := {(u, v) ∈ E : u ∈ S, v 6∈ S} for the cut corresponding to S. We shall327

sometimes refer to the vertices of these request-pairs as terminals to distinguish them328

from Steiner vertices in G that do not participate in any request-pair. The sparsity of329

a graph G with edge capacities q̂ : E → R+ w.r.t. the demands of all the request-pairs330

is the minimum (over all S ⊆ V ) of the ratio of the capacity crossing cut S to the331

demand crossing it, i.e.332

sparsity(G) := min
S⊆V

∑
e∈δ(S) q̂e∑

i∈[k]:|S∩{si,ti}|=1 di
.333

334

It is well known that if the sparsity is Ω(log k) then there is a fractional routing for335

all the requests that respects the capacities [34, 7].336

Lemma 3.3. With probability at least 1−k−3α, the sparsity of graph GF with edge337

capacities {q̂e : e ∈ E} and requests {(si, ti, di) : i ∈ [k]} is at least λ/3.338

Proof. For the proof we consider a virtual graph B on vertices V with the following339

edges and capacities:340

• Steiner edges: each edge e ∈ GS has capacity q̄e = λq.341

• Hallucinated edges: for each i ∈ [k] edge (si, ti) has capacity q̄(si,ti) = q ·Bi.342

Each hallucinated edge (si, ti) in B corresponds to an si− ti path carrying q ·Bi flow343

in H. Hence, for any T ⊆ V , the q̂-capacity of cut δ(T ) is at least as much as its344

q̄-capacity. Thus it suffices to show that the sparsity of B is at least λ.345

We observe that the connected components in B are the same as those in the346

Steiner forest GS : this is because every request pair {si, ti}ki=1 is already connected347

in GS . Moreover, in order to lower bound the sparsity of B, it suffices to lower bound348

the sparsity of each component of GS : this is because there are no requests across349

components of GS . In particular, we will show that the sparsity of any component of350

GS is at least λ with probability 1− 1
k4α . Then, a union bound over all components351

in GS (which are at most k) would prove the lemma.352

Consider now any connected component of GS . To reduce notation, we assume353

in the rest of the proof that there is a single component in GS which connects all354

k pairs. (Otherwise, exactly the same argument works by restricting to the request-355

pairs in a particular connected component.) Let GS = (VS , ES) denote this connected356

component, which is a Steiner tree on all terminals. By shortcutting over degree two357
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10 ANTONIADIS ET AL.

Steiner vertices, we may assume that the number of vertices |VS | is at most 4k (i.e.358

2k terminals and at most 2k Steiner vertices).359

The main idea now is to apply a classic cut-sparsification result of [29]. To this360

end, consider a random multigraphM on vertices VS by independently sampling the361

following edges:362

• For each e ∈ ES there are λ parallel edges e1, · · · eλ between the end-points363

of e, each with probability p(ej) = 1.364

• For each request i ∈ [k] there are di parallel edges ri,1, · · · ri,di between si and365

ti, each with probability p(ri,j) = λ/q.366

Note that scaling all edges in M by factor q yields graph B. Let M̂ denote the367

weighted multigraph where each edge e has weight equal to its probability pe (defined368

above). As ES corresponds to a tree on all vertices VS , the minimum cut in M̂ is at369

least λ. By choosing λ ≥ 9(4α + 2) ln |VS | which is O(log k), and applying Theorem370

2.1 from [29], we obtain:371

With probability at least 1− k−4α, every cut in M has capacity at372

least 1
3 times its capacity in M̂.373

Now, observe that the capacity of any cut T ⊆ VS in M̂ is at least

λ

q

∑
i∈[k]:|{si,ti}∩T |=1

di =
λ

q
· d(δT ),

where d(δT ) denotes the total demand crossing cut T . Combined with the above374

cut-sparsification result and the fact that B ∼ q ×M, it follows that the capacity of375

any cut T ⊆ VS in B is at least λ
3 · d(δT ) with probability at least 1− k−4α. Thus the376

sparsity of B is at least λ
3 with probability at least 1− k−4α.377

Corollary 3.4. With probability at least 1−k−3α, there exists a fractional rout-378

ing of all request-pairs in backbone GF that respects edge capacities q̂.379

Proof. By Lemma 3.3 we know that the sparsity of GF is at least λ/3. We also380

know that the flow-cut gap for concurrent multicommodity flow is ρ = O(log k).381

Hence, choosing λ ≥ 3 · ρ it follows that there exists a feasible fractional routing.382

Lemma 3.5. The expected dynamic power of the routing R is at most

O(1)×
(
E[Static power of GF ] +

∑
e

ceE[q̂αe ]

)
≤ O(λα) · Opt.

Proof. We will bound the expected optimal dynamic power of instance Iact by383

O(λα) · Opt. The lemma would then follow from Theorem 2.1.384

We first consider the case where there exists a fractional routing F in GF that
respects capacities q̂ (which happens with probability at least 1 − k−3α). In this
case, the dynamic power of the fractional routing F is at most

∑
e∈E ceq̂

α
e . We now

construct an unsplittable routing U from F by simple randomized rounding. For each
request i, we take a path decomposition {P ij , µij} of the si − ti flow in the fractional

routing; here µij is the fraction of i’s demand routed along path P ij . Then we route

di units along path Pi chosen independently from the distribution {P ij , µij}, for each
i ∈ [k]. For each edge e, let fe (resp. Ue) denote the load on e in routing F (resp. U).

Note that Ue =
∑k
i=1 di · Ie,i where Ie,i = 1e∈Pi . Also fe = E[Ue]. For a fixed edge e,
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as the random variables Ie,i are independent, we can use Theorem B.2 to obtain:

E[Uαe ] ≤ O(1) ·max{fαe ,
k∑
i=1

dαi · E[Ie,i]} ≤ O(1) ·max{fαe , qα−1 · fe}.

The last inequality uses the fact that maxi∈[k] di ≤ q. Moreover,

qα−1 · fe ≤ max{q, fe}α ≤ qα + fαe = σ + fαe ,

which implies E[Uαe ] ≤ O(1) · (σ + fαe ). So the expected dynamic power of U is385 ∑
e∈GF

ceE[Uαe ] ≤ O(1)
∑
e∈GF

ce(σ + fαe )386

= O(1) · σ
∑
e∈GF

ce +O(1) ·
∑
e∈GF

cef
α
e387

≤ O(1) · σ
∑
e∈GF

ce +O(1) ·
∑
e∈E

ceq̂
α
e388

The first inequality uses the fact that only edges of GF are used in the routing
U and the last inequality uses our assumption that F respects capacities q̂. Taking
expectation over the random choices in Step 2, we obtain

E[
∑
e∈GF

ceU
α
e ] ≤ O(1) · σE[

∑
e∈GF

ce] +O(1) ·
∑
e∈E

ceE[q̂αe ].

This proves the first part of the lemma (note that the first term in the right-hand-side389

above is the static power of GF ). Finally, using Lemma 3.2 and (3.1) the right-hand-390

side above is at most O(λα) · Opt.391

Now we consider the case that there is no capacity-respecting fractional routing in392

GF . By Corollary 3.4 this occurs with probability at most k−3α. In this case, consider393

the routing that sends di demand along the unique si− ti path in GS for each i ∈ [k].394

Since each edge is used at most k times and max di ≤ q, the dynamic power is at most395

kα times the static power used by GS . So the dynamic power of this routing is at most396

2kα ·Opt. As this case only occurs with probability at most k−3α (Corollary 3.4), the397

expected dynamic power of this routing is k−3α · 2kα · Opt = O(1) · Opt.398

4. Priority Multicommodity Flows and Priority Cuts. We now take a de-399

tour, and describe a generalization of multicommodity flows which will help us in the400

analysis of our online algorithm for EERP. We stress that the online algorithm itself401

remains very simple. The following abstractions will be used exclusively in the anal-402

ysis. We also believe that these priority extensions of the standard multicommodity403

flows would be of independent interest.404

In a priority multicommodity flow, we are given an increasing sequence of multi-405

graphs G(1) ⊆ G(2) ⊆ · · · ⊆ G(k) with respective requests {(si, ti, di)}ki=1. Note that406

the vertex-set V remains the same for all the multigraphs. Also, while in general the407

edges could have arbitrary non-negative capacities, we assume for simplicity that all408

edges have unit capacity. Indeed, this is without loss of generality as we can replace409

an edge e with capacity q̂e with q̂e parallel edges of unit capacity. Hence, for the rest410

of this section, we assume that all edges have unit capacity.411

Definition 4.1 (Priority Multicommodity Flow). Consider any sequence of412

multigraphs G(1) ⊆ G(2) ⊆ · · · ⊆ G(k) and requests {(si, ti, di) : i ∈ [k]}. A priority413
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multicommodity flow of value γ consists of a fractional routing of γ · di units of flow414

between si and ti only using edges of multigraph G(i), for each i ∈ [k], where the total415

flow through any edge e is at most 1.416

Intuitively, edges appear with priorities (think of the priority of an edge to be ` if417

it first appears in G(`)), and the request pair si-ti can only use edges which have418

priority lesser than or equal to i to route its flow. It is easy to see that the maximum419

concurrent priority multicommodity flow can be computed efficiently using a linear420

programming formulation.421

As for the dual notion of cuts, there are in fact two plausible definitions. One,422

inspired by the LP dual is what we call priority cuts, and the second, which will be423

easier to argue about, is what we call prefix cuts.424

Definition 4.2 (Priority Cuts). Consider any sequence of multigraphs G(1) ⊆425

G(2) ⊆ · · · ⊆ G(k) with unit edge-capacities and requests {(si, ti, di) : i ∈ [k]}. We426

say that a set Q ⊆ G(k) of edges priority separates pair i if and only if si and ti427

are separated in the graph G(i) \ Q. The sparsity of a priority-cut Q is the ratio428

of |Q| to the total demand of pairs that are priority separated by Q. The sparsest429

priority-cut is the minimum sparsity over all priority-cuts.430

Definition 4.3 (Prefix Sparsity). Consider any sequence of multigraphs G(1) ⊆
G(2) ⊆ · · · ⊆ G(k) with unit edge-capacities and requests {(si, ti, di) : i ∈ [k]}. The
prefix sparsity of this sequence is

k
min
i=1

min
S⊆V

|δG(i)(S)|∑
1≤j≤i:|S∩{sj ,tj}|=1 dj

.

4.1. Relationship between Prefix and Priority Sparsity. In this section,431

we relate the two definitions of sparsity. Indeed, from the definitions, it is clear that432

the value of the sparsest priority cut is at most the prefix sparsity, since every prefix433

cut is also a priority cut. However, the reverse direction is not obvious. Note that434

a demand j may be priority cut by some subset Q ⊆ G(k) even though it is not435

separated in G(i)\Q for any i > j, i.e. j does not contribute to the ith prefix-sparsity436

for i > j. To this end, we next show that there is indeed an approximate equivalence437

between the two notions of sparsity.438

Theorem 4.4. Consider a sequence of unit-capacity multigraphs G(1) ⊆ G(2) ⊆439

· · · ⊆ G(k) with requests {(si, ti, di) : i ∈ [k]}. If the prefix-sparsity is at least α, then440

the sparsest priority cut is at least α
2 log k .441

Proof. Consider any Q ⊆ G(k) that priority separates pairs X ⊆ [k]. For any442

subset Y ⊆ [k] of requests, let d(Y ) =
∑
i∈Y di denote its total demand. We will show443

that d(X) ≤ 2 log k
α · |Q|, which would imply the desired lower bound on the sparsest444

priority-cut. Define graph H(i) := G(i) \ Q for each i ∈ [k]. The proof is based on445

considering the connectivity structure in the sequence H(1) ⊆ H(2) ⊆ · · · ⊆ H(k).446

We say that at each time i ∈ [k] the request-pair (si, ti) arrives. At time j when447

(sj , tj) arrives, the edges G(j)\G(j−1)\Q are added to graph H(j−1) to get graph448

H(j). Note that for each i ∈ X, the pair si − ti is separated in graph H(i), by the449

definition of priority-cut Q.450

To simplify the analysis, we assume (without loss of generality) that H(k) has a451

single connected component: this can be ensured by adding a dummy request k + 1452

at the end where the newly arriving edges G(k + 1) \ G(k), which are disjoint from453

Q, contains a spanning tree.454
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For any subset of vertices V ′ ⊆ V , let N(V ′) = d({i ∈ X : si, ti ∈ V ′}) be the455

total demand of requests in X that are induced in V ′. We will show below by an456

inductive argument that d(X) = N(V ) ≤ 2 log k
α |Q|. In the following, we refer to the457

end points of request-pairs as terminals.458

We now define a recurrence. Consider any i ∈ [k] and a connected component C459

in H(i). Let j ≤ i be the earliest time a request-pair arrived such that all vertices in C460

became connected in graph H(j). Let C1, C2, . . . C` be the components in H(j−1)[C]461

which merged to become connected as C, at time j. By definition, N(Ch) equals the462

total demand of pairs in X that are contained in Ch, for each h ∈ [`]. Note that463

N(C) equals
∑`
h=1N(Ch) + d(I(C)) where I(C) denotes the set of requests in X464

“crossing” {Ch}`h=1, i.e. pairs having end points in two distinct components among465

{Ch}`h=1. For each h ∈ [`] define:466

• Qh = |δ(Ch) ∩ Q| the number of edges in Q with exactly one endpoint in467

Ch. Note that Qh = |δG(j−1)(Ch)| because Ch is a connected component in468

H(j − 1) = G(j − 1) \Q.469

• Ih = {a ∈ X : a ≤ j − 1, |{sa, ta} ∩ Ch| = 1} the set of requests in X that470

arrive by time j − 1 and have exactly one end point in Ch.471

We index the components {Ch}`h=1 so that C1 contains the maximum number of

terminals. We claim that I(C) ⊆ ⋃`h=2 Ih. To see this, note that each request in
I(C) must have exactly one end-point in at least one component {Ch}`h=2. Moreover,
I(C) ⊆ [j−1] as each pair b ∈ I(C) is in X and is induced on C which gets connected
at time j: recall that sb and tb must be disconnected in graph H(b). Thus we have

N(C) ≤
∑̀
h=1

N(Ch) +
∑̀
h=2

d(Ih).

We now use the prefix-sparsity condition to bound each d(Ih). Consider the cut
Ch in graph G(j−1). The number of crossing edges

∣∣δG(j−1)(Ch)
∣∣ is at most Qh since

Ch is a maximally connected component of H(j − 1) = G(j − 1) \Q. Moreover, Ih is
a subset of the requests with index at most j − 1 crossing Ch. By the prefix-sparisty
assumption, the sparsity of cut Ch in graph G(j − 1) is at least α, i.e.

α ≤
∣∣δG(j−1)(Ch)

∣∣
d ({a ∈ [j − 1] : |Ch ∩ {sa, ta}| = 1}) ≤

Qh
d(Ih)

.

Combining the above two inequalities, we obtain472

(4.1) N(C) ≤
∑̀
h=1

N(Ch) +
1

α
·
∑̀
h=2

Qh.473

Consider expanding this recursion to obtain N(V ), which is possible as V is a474

connected component in H(k). The base case of the recursion is singleton components,475

i.e. N({v}) = 0 for any v ∈ V . Consider the contribution of each edge e = (u, v) ∈ Q476

separately. Whenever e participates in the expression 1
α ·
∑`
h=2Qh in (4.1), the number477

of terminals in the component containing either u or v doubles. This is because e must478

have one end-point in some {Ch}`h=2 and we chose indices such that terminals(C1) ≥479

terminals(Ch) for all h ∈ [`]. Thus, the number of times e contributes is at most480

2 log2 k, and its total contribution is at most 2 log k
α . It follows that N(V ) ≤ 2 log k

α · |Q|.481

This completes the proof.482
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vj2i+1 v(j+1)2i
· · ·

vj2i+2i+1 v(j+2)2i
· · · v2`−2i+1 v2`

· · ·v1 v2i
· · ·

Cliques of infinite capacity edges in G(i)

· · ·Unit capacity edges in G(0)

· · · · · ·

Request pairs in batch i

r

Fig. 1. Gap instance for prefix sparsity and priority sparsest cut.

Tight example. We now provide an example to show that the gap between483

prefix sparsity and priority sparsest cut can be Ω(log k), thereby showing that The-484

orem 4.4 is tight up to constant factors. For clarity in exposition, we assume that485

request pairs arrive in batches of multiple request pairs per batch, and edges are also486

correspondingly added in batches.487

Consider the following priority multigraph. There are n = 2` leaf vertices, say488

labeled v1, v2, . . . , vn, and one root vertex r. The graph G(0) consists of unit-capacity489

edges (vj , r) for 1 ≤ j ≤ n. The graph G(1) then consists of infinite capacity edges490

between (v1, v2), (v3, v4), . . . , (vn−1, vn). For each 1 ≤ i ≤ `, graph G(i) adds edges of491

infinite capacity between any pair of vertices in {vj·2i+1, vj·2i+2, . . . , v(j+1)·2i} for all492

0 ≤ j ≤ 2`−i − 1. See Figure 1.493

We now explain the request pairs which are introduced. In the batch correspond-494

ing to G(0), for each 0 ≤ a ≤ 2`−1 − 1, there is a request pair with unit demand495

introduced between v2a+1 and v2a+2. For each 1 ≤ i ≤ ` − 1, the ith batch corre-496

sponding to G(i) has a request pair with unit demand between vj2i+a and v(j+1)2i+a497

for all 1 ≤ a ≤ 2i and all even 0 ≤ j ≤ 2`−i − 1. Note that the total number of498

request pairs is k := ` · 2`−1 as the requests in each batch corresponds to a matching499

on {va}2
`

a=1. See also Figure 1.500

This completes the construction of our instance. To finish the analysis, we show501

that the priority sparsest cut value is at most 2/`, and that the prefix sparsity is at502

least 1, thereby giving us a gap of ` = Θ(log k).503

Indeed, note that the set of edges Q = {(vj , r) : 1 ≤ j ≤ n} forms a priority504

cut which priority separates all the request pairs. To see this, consider graph G(i)505

for any 0 ≤ i ≤ ` − 1. Note that each edge in G(i) \ Q is induced on some “group”506

{vj·2i+1, vj·2i+2, . . . , v(j+1)·2i} for 0 ≤ j ≤ 2`−i − 1. Whereas, every request pair in507

the ith batch is between vertices from different groups. Hence, all the request pairs508

in the ith batch (for 0 ≤ i ≤ ` − 1) are separated in G(i) \ Q, giving us the desired509

bound on the priority sparsest cut.510

Next we note that the prefix sparsity is at least 1. Indeed, consider any i for511

0 ≤ i ≤ `− 1, and let us restrict our attention to the graph G(i) and all the requests512

in the batches 0, 1, . . . , i. We now exhibit a concurrent multicommodity flow for these513

requests in G(i). Indeed, for all request pairs in batches 0, 1, . . . , i − 1, we directly514

send their flow using the infinite capacity edges present in G(i). For each request (s, t)515

in the ith batch, we route the flow along the s− r − t path in G(0). Note that these516

paths are edge disjoint as each vertex {va}2
`

a=1 appears in exactly one request from517
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batch i. So all edge capacities are satisfied. As there is a feasible multicommodity518

flow, the prefix sparsity (in fact, even its LP relaxation) must be at least one.519

4.2. Priority Multicommodity Flows and Priority Sparsity. We can ex-520

press the maximum concurrent priority multicommodity flow problem as a linear521

program (see below). Let F ∗ denote the optimal value of this LP. The dual of this522

LP (which also has optimal value F ∗) turns out to be a natural relaxation of the523

sparsest priority cut problem. To bound the flow-cut gap, we show that an op-524

timal dual solution can be rounded to obtain an integral priority cut of sparsity525

O(log2 k · log log k)F ∗, which would establish an upper bound on the flow-cut gap for526

priority multicommodity flows. From a technical perspective, our rounding uses the527

region growing approach [22, 21] in a recursive manner to generate the priority cut,528

unlike traditional region-growing algorithms for sparsest cut. We remark that for the529

static case (without priorities), a better Θ(log k) flow-cut gap is known; however, this530

relies on metric embedding ideas [34] which are not directly applicable in our setting531

with priorities. Improving our upper bounds (or obtaining better lower bounds) for532

the priority flow-cut gap is an interesting direction in its own right.533

Priority Multicommodity Flow LP and Dual. We begin by stating the LP534

for priority multicommodity flow, and its dual problem. In the LPs below, Pi denotes535

the set of all si-ti paths in G(i). Also, in the primal formulation, the variable f(p)536

denotes the amount of flow to be routed on some path p.537

max γ(PriorityFlowLP)538

s.t.
∑
p∈Pi

f(p) ≥ γdi ∀i ∈ [k](4.2)539

∑
p|e∈p

f(p) ≤ 1 ∀e ∈ G(k)(4.3)540

f(p) ≥ 0 ∀i ∈ [k],∀p ∈ Pi(4.4)541542

min
∑

e∈G(k)

ze(PriorityCutLP)543

s.t.

k∑
i=1

diηi ≥ 1(4.5)544 ∑
e∈p

ze ≥ ηi ∀p ∈ Pi ∀i ∈ [k](4.6)545

ze ≥ 0 ∀e ∈ G(k)(4.7)546

ηi ≥ 0 ∀i ∈ [k](4.8)547548

The feasible solutions for the primal LP are fractional routings such that each549

request-pair i routes at least a γ-fraction of its demand between them in graph G(i)550

(constraint (4.2)), and such that no edge supports flow more than one (constraint551

(4.3)). This is precisely the priority multicommodity flow problem.552

In the dual, we have an LP relaxation of the sparsest priority-cut problem: if553

an integral solution Q ⊆ G(k) priority-cuts k′ request-pairs, we set ηi = 1/k′ for554

the request-pairs which are priority separated, and ze = 1/k′ for edges in Q and 0555
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otherwise. The objective value is then the sparsity of the priority-cut Q. We now556

present our main result of this section, which essentially establishes a bound on the557

flow-cut gap.558

Lemma 4.5. Given a fractional solution to (PriorityCutLP) of value F ∗, we can559

obtain a priority cut of sparsity at most O(log k · log(Dk) · log log k)F ∗.560

Here is an outline of the proof. Consider any fixed optimal solution (η∗, z∗) to561

(PriorityCutLP). First, we use a geometric scaling step (Claim 4.6) to reduce to a “pri-562

ority multicut” problem where all requests in some subset must be priority cut. This563

step incurs an O(log kD)-factor loss in the sparsity. Then we apply a variant of the564

region growing method (Lemma 4.5) to round fractional priority multicut solutions,565

which loses another O(log k · log log k) factor.566

We now define the priority multicut problem formally. An instance of priority567

multicut is given by a sequence H(1) ⊆ H(2) ⊆ · · · ⊆ H(r) of multigraphs with a568

set of demand pairs Π = {(si, ti)}ri=1. The goal is to find a minimum size subset569

Q ⊆ H(r) of edges that priority cuts each pair, i.e. si− ti is disconnected in H(i) \Q570

for all i ∈ [r]. The natural LP relaxation for priority multicut is:571

min
∑

e∈H(r)

ze(MultiCutLP)572

∑
e∈p

ze ≥ 1 ∀i ∈ [r], ∀p ∈ Pi,(4.9)573

ze ≥ 0, ∀e ∈ H(r) .(4.10)574575

Above, Pi is the set of si − ti paths in graph H(i).576

Claim 4.6. Given any solution (η∗, z∗) to (PriorityCutLP), there is a subset Π ⊆
[k] and solution z feasible to (MultiCutLP) for separating the requests in Π such that:∑

e ze∑
i∈Π di

≤ 8 log(Dk) ·
∑
e

z∗e .

Proof. For all i ∈ [k] where η∗i ≤ 1/(2Dk) we reset η∗i = 0. Notice that since
there are at most k variables ηi, this results in a solution to (PriorityCutLP) where the
constraint (4.5) has

k∑
i=1

di · η∗i ≥ 1− k ·D · 1

2Dk
≥ 1

2
.

In other words, (4.5) is satisfied to extent at least 1/2. We now geometrically group
the η∗ variables, according to classes

Ch = {i ∈ [k] | 2−h < η∗i ≤ 2−h+1}, for h ∈ {1, 2, . . . , log(2Dk)}.

Let C` be the group that maximizes
∑
i∈C` diη

∗
i . Since there are at most log(2Dk)577

groups and
∑
i diη

∗
i ≥ 1/2, we have 2−`+1

∑
i∈C` di ≥

∑
i∈C` diη

∗
i ≥ 1

(4 log(Dk)) , and578

so we have
∑
i∈C` di ≥ 2`−3/ log(Dk).579

Now, to get our instance for priority multicut and associated fractional solution
to (MultiCutLP), we simply set Π = C`, i.e., all the requests in C` need to be priority
cut. The graph sequence G(1) ⊆ G(2) ⊆ · · ·G(k) is also restricted to the requests in
Π. To ensure that every pair in C` is separated, we scale the metric {z∗e}e∈E by a
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factor of 2`, i.e., set ze = min(1, 2`z∗e ). It is now easy to see that z is a valid fractional
solution for (MultiCutLP) for separating the requests in Π = C`. Moreover,∑

e ze∑
i∈Π di

≤ 2`
∑
e z
∗
e

2`−3/ log(Dk)
≤ 8 log(Dk) ·

∑
e

z∗e ,

which proves the claim.580

We will use the fractional solution z to the priority multicut instance on Π (ob-581

tained from Claim 4.6) to find a priority cut of low sparsity. We restrict the graph582

sequence G(1) ⊆ G(2) ⊆ · · ·G(k) to the requests in Π: let H(1) ⊆ H(2) ⊆ · · ·H(r)583

denote this subsequence where r = |Π|. To reduce notation we also renumber the584

requests so that the requests in Π are numbered 1, 2, · · · r in the order of their arrival.585

We now proceed with our rounding algorithm. The next step relies on a variant of
the region-growing technique [33, 22, 21]. Before describing the rounding, we introduce
some useful notation. Given a graph L ⊆ H(r), let dL denote the shortest-path metric
defined by {ze : e ∈ L}, i.e. dL(u, v) is the length of the shortest path between u and
v with weight z only on edges of L. For any vertex v ∈ V and ρ > 0, define:

BL(v, ρ) :=
{
u ∈ V : dL(v, u) < ρ

}
the ball of radius ρ around v in metric dL.

L(v, ρ) the induced graph of L on vertices BL(v, ρ).

δL(v, ρ) = {(u,w) ∈ L : u ∈ BL(v, ρ), w /∈ BL(v, ρ)} the edges cut by BL(v, ρ).

VL(v, ρ) :=
∑

e∈L(v,ρ)

ze +
∑

(u,w)∈δL(v,ρ)

(
ρ− dL(v, u)

)
+
V∗
r
· terminals

(
BL(v, ρ)

)
the volume of ball BL(v, ρ), where V∗ =

∑
e∈H(r) ze is the total LP volume.586

We will use the following technical lemma:587

Lemma 4.7 ([21]). For any i ∈ [r] and L ⊆ H(r) with dL(si, ti) ≥ 1, there exists
a value 0 < ρ < 1/2 such that

|δL(si, ρ)| ≤ 4 log log r · VL(si, ρ) · log

(
2 · VL(si, 1/2)

VL(si, ρ)

)
.

In rounding solution z of (MultiCutLP), we will recursively generate the priority
multicut Q. Recall that we have now restricted ourselves to the requests in Π, that are
renumbered [r] = {1, 2, · · · r}. The input to our recursive procedure is an index i ∈ [r]
and vertex subset U ⊆ V such that i is the maximum index with both si, ti ∈ U . Let
ΠU denote the set of all requests in Π with both end-points in U . The initial call is
with i = r and U = V , and the solution Q = ∅ initially. For the recursive step, given i
and U , we consider the induced graph L = H(i)[U ]. Note that dH(i)(si, ti) ≥ 1 by the
feasibility of fractional solution z. Using the fact that both si, ti ∈ L ⊆ H(i) we have
dL(si, ti) ≥ 1. Let Z :=

∑
e∈L ze + V∗

r · terminals(U) denote the volume of subgraph
L. Applying Lemma 4.7 to both si and ti, we find two radii ρs, ρt <

1
2 such that:

|δL(si, ρs)| ≤ 4 log log r · VL(si, ρs) · log

(
2 · Z

VL(si, ρs)

)
, and

|δL(ti, ρt)| ≤ 4 log log r · VL(ti, ρt) · log

(
2 · Z
VL(si, ρ)

)
.
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Above we used the fact that VL(si, 1/2) ≤ Z since ball BL(si, 1/2) ⊆ L; simi-588

larly VL(ti, 1/2) ≤ Z. Note that the balls BL(si, ρs) and BL(ti, ρt) are disjoint589

as dL(si, ti) ≥ 1 and ρs, ρt <
1
2 . So one of them, say the ball around si, has vol-590

ume X := VL(si, ρs) ≤ Z/2. We update the solution Q ← Q ∪ δL(si, ρs). Let591

U1 ← BL(si, ρs) and U2 ← U \ BL(si, ρs). Note that all request-pairs j ∈ ΠU which592

have exactly one end-point in U1 are priority-cut by δL(si, ρs); in fact request j is593

separated even in graph H(i) ⊇ H(j). The remaining pairs of ΠU are induced on594

either U1 or U2, and we handle them recursively in the two calls with U1 and U2595

(along with the indices of the maximum induced requests). Let X ′ and Y denote the596

volumes of the induced graphs H(i)[U1] and H(i)[U2], on which we recurse.2 Note597

that X ′ ≤ X and Y ≤ Z −X.598

In order to bound the total cost of our solution Q we make use of a recursive
bound from [40, 21]. For any value 0 ≤ x ≤ V∗, let f(x) denote the maximum
cost of the priority cut computed by this procedure on any subgraph of volume x.
Note that f(x) = 0 for x < 2V∗

r since this would correspond to a subgraph with
at most one terminal, i.e. containing no induced request-pair. We will show that
f(x) ≤ 8 log log r · x · log

(
2r·x
V∗
)
. From the preceding discussion, for any volume Z

subgraph we have:

f(Z) ≤ max
V∗
r ≤X≤Z2

(
4 log log r ·X · log

2Z

X
+ f(X) + f(Z −X)

)
.

Inductively substituting f(X) ≤ 8 log log r · X · log
(

2rX
V∗
)

and similarly for f(Z −599

X), one can check directly (using X ≤ Z/2) that the expression above is at most600

8 log log r · Z · log
(

2rZ
V∗
)
.601

Clearly the total cost of Q is at most f(3V∗), which by the above calculation is
O(log r · log log r) · V∗ = O(log r · log log r) ·∑e∈H(r) ze. Moreover, all demands in Π
are separated. So the sparsity of priority cut Q is

O(log r · log log r) ·
∑
e∈H(r) ze∑
i∈Π di

≤ O(1) log k · log(Dk) · log log k
∑
e

z∗e ,

where the inequality is by Claim 4.6. This completes the proof of Lemma 4.5.602

An immediate consequence of Lemma 4.5 is:603

Theorem 4.8. The worst-case ratio between sparsest priority-cut and maximum604

priority flow is O(log k · log(kD) · log log k), where D is the max-to-min demand ratio.605

Proof. Given any instance I of priority multicommodity flow (Definition 4.1), let606

I ′ denote the instance with all demands and capacities scaled down by the minimum607

demand mini di. It is clear that the sparsest priority-cut remains the same in both608

I and I ′; a similar observation is true for the maximum priority flow. Note that the609

maximum demand in I ′ is D = maxi di/mini di. We can now apply Lemma 4.5 to I ′610

to obtain an O(log k · log(kD) · log log k) ratio between the priority cut and flow. So611

we obtain the same ratio for instance I also.612

4.3. Removing Dependence on Demand Values. We now show that the613

dependence on the maximum demand can be eliminated in Theorem 4.8. The only614

part in our analysis which has the dependence on D is in Claim 4.6, which reduces615

2The actual volumes may be even smaller as the recursive call on U1 (similarly U2) has volume
H(j)[U1] where j < i is the maximum index with sj , tj ∈ U1.
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priority sparsest cut to multicut. Our idea to eliminate the dependence on D is to616

(i) break up the original instance into several sub-instances, such that the ratio of617

max-to-min demand is polynomial in k in each sub-instance, and (ii) combine the618

flow solutions across all subinstances while incurring only an extra constant-factor in619

congestion. This high-level approach is similar to that of Plotkin and Tardos [36]620

for flow-cut gaps in the static setting where earlier bounds of O(log k logD) [31]621

were improved to O(log2 k). However, the specific flow combination used in [36]622

is inapplicable in the priority setting. So we provide a different method below.623

Theorem 4.9. The worst-case ratio between sparsest priority-cut and maximum624

priority flow is O(log k · log n · log log k), where n is the number of vertices.625

Proof. By assigning edge capacities, we assume (without loss of generality) that626

the number of edges in each graph G(i) is at most m = O(n2). Using LP extreme627

point properties, it follows that any flow for any request i ∈ [k] can be decomposed628

into at most m non-zero flow paths.629

As a first step, we break up the demands into classes where

Dh = {i ∈ [k] : (2m)4h ≤ di < (2m)4(h+1)}, ∀h ∈ Z.

Note that the ratio of maximum demand to minimum demand in each class is at630

most m4. By Theorem 4.8, the flow-cut ratio for all requests within any class is631

ρ := O(log k · log n · log log k). Hence there is a priority multicommodity flow Fh632

routing all demands in each class h with congestion ρ.633

It suffices to obtain a routing of all the demands with congestion O(ρ). We634

combine flows in the following manner. We combine all the odd classes into one flow635

of O(ρ) congestion, and all the even classes into another flow of O(ρ) congestion.636

Putting the two together would imply the desired flow of O(ρ) congestion for all637

classes.638

To this end, we now show how to combine the flows of the odd classes into one639

common flow (handling even classes is identical). Here, we use the fact that the640

number of non-zero flow paths for each request in class Fh is at most m. We simplify641

each flow Fh in the following manner: for each i ∈ Dh, simply ignore all flow paths642

carrying less than di/(2m) flow. Note that after this, the total flow routed for each643

demand i is still at least di/2. Moreover, each edge carrying non-zero flow in Fh in644

fact carries a flow of at least (2m)4h/(2m). Now we observe that even if we simply645

add all flows into a single flow, the overhead in congestion would be small. Formally,646

consider any edge e and let h denote the largest class whose demands route flow647

using e. Then, the total utilization of edge e by demands of all odd classes before648

h is L<he ≤ k ·m4(h−1) ≤ m4h−3. (Note that as we are only combining odd classes,649

all demands from previous classes are at most (2m)4(h−1).) On the other hand, the650

utilization of e in just Fh is at least (2m)4h−1 ≥ 1
2 · L<he . So we can combine all odd651

classes with only a factor 4 increase in congestion.652

5. Online Algorithm. In this section we provide a randomized online algorithm653

for EERP with competitive ratio O(log3α+1 k·(log log k)2α), which proves Theorem 1.2.654

For better clarity in presentation, we will first assume that k is known up front to655

the algorithm, and in Section 5.2 we discharge this assumption to make the algorithm656

truly online. Recall that we use λ = O(log k) as in the offline algorithm; this value is657

determined since we assume we know the value of k.658

Similar to the offline algorithm, our overall online algorithm comprises two stages:659

in the first “buying” stage, we decide which edges to power on (or buy) and incur the660
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static cost, in an online manner. Once this is done, the natural thing to do would be661

to route all the requests using the edges bought, to minimize the dynamic power of662

the routing. Note that the waterfilling algorithm is naturally suited for solving this663

DynPM problem in an online manner. We perform the buying stage in steps 1 and 2664

below, and the final routing in step 3 below.665

Our algorithm separately runs two instances of the online waterfilling algorithm666

(Theorem 2.1). The first one routes the hallucinated demands to determine the edges667

to buy, and the second one actually routes all the original demands. The first instance668

is called Ihal and the second is called Iact. Initially, both are empty instances.669

In response to request-pair (si, ti) the algorithm takes the following steps:
1. Augmenting the Steiner backbone: We run an online algorithm for
Steiner forest to connect si and ti, where the edges have costs {ce : e ∈ E}.
2. Augmenting the Hallucination backbone: Request i ∈ [k] “hallucinates”
a demand of q · Bi units, where Bi ∼ Binomial(di,

λ
q ). We feed the hallucinated

demand to the online waterfilling algorithm (Theorem 2.1) for instance Ihal, which
updates its routing H to add an unsplittable routing of q ·Bi units of flow between
si and ti. Let GH(i) ⊇ GH(i− 1) denote the subgraph of all edges used in H.
3. Routing: Define graph GF (i) := GS(i) ∪ GH(i), and let Pi denote the set
of all si-ti paths in GF (i). Now feed the actual demand (si, ti, di) to the online
waterfilling algorithm (Theorem 2.1) for instance Iact to find a path Pi ∈ Pi.
Output Pi as the routing of request i.

670

5.1. Analysis. The outline of the analysis closely mirrors that of Section 3, with671

the main difference being that we use the bounds established in Section 4 on the flow-672

cut gap of priority multicommodity flows instead of the classical flow-cut gaps we673

used in Section 3. We now show that our online algorithm, which knows k upfront, is674

O
(
logα+3 k · (log log k)α

)
-competitive for EERP. The high-level approach is the same675

as for the offline problem.676

Static power of GS(k). To maintain an online Steiner forest, we use the O(log k)-677

competitive algorithm from [12]. This allows us to bound the static power of edges678

in GS(k) by O(log k) · Opt.679

Static power of GH(k). We bound the static power for the hallucination backbone680

by its dynamic power (as each hallucinated demand is at least q), which in turn can681

be bounded by O(logα k) · Opt, using an argument analogous to that of Lemma 3.1.682

Dynamic power. The analysis of the dynamic power of the algorithm’s routing683

is significantly more involved than in the offline case. Again, using Theorem 2.1, it684

suffices to prove the existence of a routing of low dynamic power where each request685

i is routed on a path from Pi, which is the set of all si-ti paths in the current graph686

GF (i). But how do we ensure that there exists a good (offline) routing with the687

additional restriction on the edges allowed for each request? In the offline algorithm,688

because the backbone graph was static, we could appeal to the classic multicommodity689

flow-cut gap: this is no longer applicable in the online case. Indeed, this is the main690

difference from the analysis of the offline algorithm, and we resort to the bounds we691

established on the flow-cut gap of priority multicommodity flows in Theorem 4.9.692

Lemma 5.1. The expected static power of the backbone GF (k) is O(λα) · Opt.693

Proof. The proof is identical to Lemma 3.2 in the offline case, except that the694

static power of GS(k) is O(log k) · Opt due to the online Steiner forest algorithm.695

In order to show that the dynamic power of our routing is small, we need to show
that there is a low-congestion priority multicommodity flow on the backbone edges.
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Formally, let {He(i) : e ∈ E} denote the edge loads induced by the routing H after
arrival of request pair si-ti. Then we define the following edge capacities:

q̂e(i) =

{
He(i) if e ∈ GF (i) \GS(i)
He(i) + λq if e ∈ GS(i)

, ∀e ∈ E.

Note that only edges in GF (i) = GS(i) ∪ GH(i) have nonzero capacity. Also, note696

that the values q̂e(i) are monotonically non-decreasing over the value of i, since the697

routing H is an online routing which doesn’t re-route any flows, and GS is the output698

of an online Steiner forest algorithm which only adds edges. Finally, similar to the699

offline algorithm, we can bound q̂e(k)α ≤ 2α
(
He(k)α + λασ · 1e∈GS(k)

)
, so we have:700

(5.1)
∑
e∈E

ceE[q̂e(k)α] ≤ 2α

∑
e∈E

ceE[He(k)α] + σλα ·
∑

e∈GS(k)

ce

 = O(λα+1) · Opt,701

where the last inequality uses (i) the static power of GS(k) is σ · ∑e∈GS(k) ce ≤702

O(log k) ·Opt due to the online Steiner forest algorithm and (ii) the expected dynamic703

power of H is
∑
e∈E ceE[He(k)α] = O(λα) · Opt by Lemma 3.1.704

Equipped with the above notations, we show that the prefix-sparsity of the graphs705

GF (1) ⊆ GF (2) ⊆ · · · ⊆ GF (k) is large w.r.t the original demands, where an edge706

e ∈ GF (i) has capacity q̂e(i). This is analogous to Lemma 3.3 for the offline setting.707

Lemma 5.2. With probability at least 1 − O(1/k2α), the prefix sparsity of the708

sequence of graphs GF (i) (equipped with edge capacities {q̂e(i)}) is at least λ/3.709

Proof. Fix some i. Since all pairs in [i] = {1, 2, · · · i} have hallucinated indepen-710

dently, we can apply Lemma 3.3 and conclude that the sparsity of G(i) is at least λ/3711

with requests [i]. The lemma then follows by a simple union bound over all i ∈ [k].712

Corollary 5.3. With probability at least 1− k−2α, there exists a fractional pri-713

ority routing that respects capacities O(log2 k · log log k)× q̂.714

Proof. We first argue that it suffices to exhibit a good priority multicommodity715

flow in the following sequence of virtual graphs B(1) ⊆ B(2) ⊆ . . . ⊆ B(k), with B(i)716

defined on vertices V with the following edges and capacities:717

• Steiner edges: each edge e ∈ GS(i) has capacity q̄e = λq in B(i).718

• Hallucinated edges: for each j ∈ [i] we add a direct edge (sj , tj) with capacity719

q̄(sj ,tj) = q ·Bj in B(i).720

Note that each hallucinated edge (sj , tj) in B(i) corresponds to an actual sj − tj721

path carrying q · Bj flow in the actual hallucinated routing H (based on which we722

assign the virtual capacities q̂e in the first place). Hence, if we find a low congestion723

priority multicommodity flow in B, then it is easy to translate it into a low congestion724

priority flow in GF with virtual capacities q̂e. Finally, we make another simplification725

which again does not alter the flows: for any degree two Steiner vertex v in B(k)726

where both its incident edges (u, v) and (v, w) are from the Steiner forest GS(k),727

short-cut these edges, i.e. remove (u, v) and (v, w), and add edge (u,w) with capacity728

λq. By repeatedly doing this, we will end up with a graph without such degree two729

Steiner vertices, which will imply that the total number of edges in B(k) (and hence730

in all its subgraphs) is at most O(k). Now we can utilize Theorem 4.9 to obtain731

an O(log2 k · log log k) flow-cut gap for such instances. Combining this fact with732

Lemma 5.2 and Theorem 4.4 then completes the proof.733
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Lemma 5.4. The expected dynamic power of the online algorithm’s routing is

O(1)×
(
E[Static power of GF ] + ρα

∑
e

ceE[q̂αe ]

)
≤ O(λα+1 ρα) · Opt,

where ρ = O(log2 k · (log log k)).734

Proof. This proof is identical to Lemma 3.5 (for the offline problem), where we:735

• use Corollary 5.3 to get the existence of a fractional routing respecting ca-736

pacities ρ · q̂ (instead of Corollary 3.4),737

• use Lemma 5.1 to bound the static power (instead of Lemma 3.2),738

• use (5.1) to bound E[q̂αe ] (instead of (3.1)), and739

• use the online guarantee from Theorem 2.1 for minimizing dynamic power.740

Combining Lemmas 5.1 and 5.4, we obtain:741

Theorem 5.5. There is an O(log3α+1 k ·(log log k)α)-competitive randomized on-742

line algorithm for EERP when the number k of requests is known.743

5.2. When Number of Requests is Unknown. Our algorithm extends easily744

to the truly online setting when the final number k of request-pairs is not known745

in advance. The only place where our online algorithm relies on knowledge of k746

is in the hallucination step. Recall that each request i hallucinates a demand of747

q · Binomial(di, λ/q) units, where the parameter λ = O(log k). Let λ(i) = O(log i)748

where the constant factor in the big-O is the same as for λ. We now modify the749

online algorithm as follows. When request-pair i arrives, we hallucinate a demand of750

q · Binomial(di, λ(i)/q) units. Subsequently, upon the arrival of each request j ≥ i,751

we ensure that request-pair i has total hallucinated demand of q ·Binomial(di, λ(j)/q)752

units. This can be done easily by re-sampling i’s hallucinated demand (with the753

appropriate probability) after each request arrival j > i.754

We will show that the competitive ratio of this algorithm is only an O((log log k)α)755

factor more than that in Theorem 5.5. Recall (from Section 5.1) the definitions of756

capacities q̂ and graphs GF (1) ⊆ GF (1) ⊆ · · ·GF (k). We continue to have Lemma 5.1757

and (5.1). However, the prefix sparsity condition (Lemma 5.2) is no longer true, as758

our sampling probabilities are now smaller. We have the following (weaker) version759

of Lemma 5.2 (the proof is identical).760

Lemma 5.6. For each i ∈ [k], with probability at least 1 − O(1/i2α), the sparsity761

of multigraph G(i) with demands {(sj , tj)}ij=1 is at least Ω(log i).762

We first analyze the algorithm assuming the following.763

(5.2) Assume that for each i ∈ [k], the sparsity of G(i) is at least log i.764

Later we show how to handle the (low probability) case where (5.2) does not hold.765

By (5.2), the prefix-sparsity of the sequence GF (1) ⊆ GF (2) ⊆ · · ·G(k) is Ω(1).766

Using this in Theorem 4.4 (instead of the log k prefix-sparsity from Lemma 5.2) we767

immediately obtain that the sparsest priority-cut is Ω(1/ log k). We can actually768

obtain a better bound by modifying the proof of Theorem 4.4, as shown below.769

Theorem 5.7. Consider a sequence of multigraphs G(1) ⊆ G(2) ⊆ · · ·G(k) with770

requests {(si, ti, di) : i ∈ [k]}. Assume that for each i ∈ [k], the sparsity of multigraph771

G(i) with requests indexed {1, 2, · · · i} is at least log i. Then the sparsest priority cut772

is Ω
(

1
log log k

)
.773
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Proof. We only provide an outline as the proof is almost identical to that of774

Theorem 4.4. The difference is in inequality (4.1) which now becomes:775

(5.3) N(C) ≤
∑̀
h=1

N(Ch) +
1

log j
·
∑̀
h=2

Qh.776

Recall that here C is a connected component that forms at time j (i.e. when request
j arrives) due to the merging of components {Ch}`h=1 in graph H(j − 1). Also C1

is the component in {Ch}`h=1 with the maximum number of terminals. This change
in the recurrence for N(·) affects the total contribution of each edge e = (u, v) ∈ Q
in the expansion of

∑
D:comp(H(k)) N(D). Recall that whenever e contributes to this

sum, the number of terminals in the component containing either u or v doubles.
Consider the total contribution of e due to components containing u (the case of v is
identical). Let 2 ≤ T1 ≤ T2 ≤ · · · ≤ Tβ ≤ 2k denote the number of terminals in u’s
component whenever e contributes due to u. Recall that the number of terminals in
u’s component at least doubles each time, i.e. Tb+1 ≥ 2 · Tb for all 1 ≤ b < β. Also,
note that if u’s component has Tb terminals then the total number of terminals at
that time jb ≥ Tb: so e’s contribution at this time is 1

log jb
≤ 1

log Tb
. Therefore, e’s

total contribution is at most:

β∑
b=1

1

log jb
≤

β∑
b=1

1

log Tb
≤

β∑
b=1

1

log (2b)
=

β∑
b=1

1

b
≤ log(2 log k).

This completes the proof of Theorem 5.7.777

Exactly as in Corollary 5.3, we obtain:778

Corollary 5.8. Assuming (5.2), there exists a fractional priority routing that779

respects capacities O(log2 k · log log k)× q̂.780

The proof is identical to Corollary 5.3, where we use Theorem 5.7 (instead of Theo-781

rem 4.4) along with the flow-cut gap (Theorem 4.9).782

We now bound the overall expected dynamic power.783

Lemma 5.9. The expected dynamic power of the online algorithm’s routing is

O(1)×
(
E[Static power of GF ] + ρα

∑
e

ceE[q̂αe ]

)
≤ O(λα+1 ρα) · Opt,

where ρ = O(log2 k · (log log k)2).784

Proof. This proof is very similar to Lemmas 5.4 and 3.5. Let

I = {i ∈ [k] : graph G(i) has sparsity at least log i}.
Then, if we restrict to the requests in I then (5.2) is satisfied. Now, exactly as in785

Lemma 5.4 (using Corollary 5.8, Lemma 5.1, Inequality (5.1) and Theorem 2.1), the786

expected dynamic power to route I is O(λα+1 ρα) · Opt.787

Now we bound the expected cost due to requests Ī = [k] \ I. We will bound the
optimal dynamic power of instance Iact restricted to Ī. To this end, consider the
feasible routing that sends di units along the unique si− ti path in GS for each i ∈ Ī.
The expected dynamic cost of this routing is at most:(∑

e∈GS
ce

)
·
k∑
i=1

Pr[i ∈ Ī] · (iq)α ≤
(∑
e∈GS

ce

)
·
k∑
i=1

i−2α · (iq)α ≤ O(1) · σ ·
∑
e∈GS

ce,
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where the first inequality uses Lemma 5.6. So the expected optimal dynamic power of788

Iact restricted to Ī is at most O(1) times the static power of GS . Using Theorem 2.1,789

the expected dynamic power of our online algorithm on Ī is also O(1) times the static790

power of GS .791

Combining the costs due to requests in I and Ī, the lemma follows.792

Using Lemmas 5.1 and 5.9, we obtain:793

Theorem 5.10. There is an O(log3α+1 k · (log log k)2α)-competitive randomized794

online algorithm for EERP.795

6. Multicommodity Capacitated Network Design. In this section, we con-796

sider the (uniform) capacitated multicommodity network design problem (CapND) as797

studied by [3]. The CapND problem is also called the fixed-charge network design798

problem in the operations research literature. In uniform CapND, we are given an799

undirected multigraph G = (V,E) with each edge e ∈ E having a cost ce and capac-800

ity q ≥ 0 (same across all edges). We are also given a collection of k request-pairs801

{(si, ti) : i ∈ [k]} each with demand di ≥ 0. The goal is to choose a minimum cost802

subgraph H ⊆ G such that H can support a concurrent multicommodity flow of the803

request-pairs. Let m = |E| denote the number of edges in G. Unlike the earlier sec-804

tions, the flow for each request does not have to be unsplittable. In the case that each805

demand is at most q, we will in fact see that our algorithm guarantees an unsplittable806

routing even if the optimum is splittable. We assume (without loss of generality) that807

there is at most one request between each pair of vertices, so k ≤ |V |2 ≤ m2.808

We only consider the online version of this problem where the requests arrive over809

time, and one needs to buy edges in an online fashion so that the current set of edges810

can support the desired multicommodity flow. We will prove Theorem 1.3, i.e. an811

(O(logm), O(log2m)) bicriteria competitive ratio. An (α, β) bicriteria performance812

guarantee means that the solution has (i) cost at most α times the optimum (with813

edge capacities q) and (ii) the total flow on each chosen edge is at most β · q. For the814

(simpler) offline version, we can obtain a slightly better (O(logm), O(logm)) bicriteria815

approximation algorithm as described in the conference version of this paper [5]: we816

do not discuss this result here.817

At a high level, our algorithm is similar to those in Sections 3 and 5. The difference818

is that we now try to minimize congestion (which corresponds to the maximum load819

on edges) rather than the energy cost (which corresponds to the sum of α powers of820

these loads). We first consider (in Section 6.1) the special case when each demand is821

at least the capacity q. We then reduce the general case to this special case using the822

hallucination idea (in Section 6.2).823

6.1. Online CapND For Demands At Least q. As a first step, note that if824

each demand is at least q, then we can ensure that each demand di is an integer825

multiple of q by considering demand ddiq e · q instead: this only loses a constant factor826

in the congestion bound. Further, each request (si, ti, di) can be split into ddiq e many827

requests of demand q each with the same terminals si and ti. Hence, for the remainder828

of the subsection, we assume that all demands are actually equal to q, the common829

edge capacity. Note that we may assume that the total demand
∑k
i=1 di ≤ mq,830

as otherwise the CapND instance must be infeasible (the total available capacity is831

mq). This means that the number of demand-q requests after the above modification832

is at most k + m, which is polynomial. The requests (si, ti) arrive online, and the833

algorithm must irrevocably buy edges so that, at any point, the subgraph bought by834

the algorithm can simultaneously support a (splittable) multi-commodity flow of q835
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demands for each request. We refer to this special case of CapND as CapNDq.836

A closely related problem is min-cost circuit routing that was considered in [9].837

Here, the routing for each request is unsplittable (rather than splittable) and the cost838

of the solution is the sum of costs over all paths used in the routing.839

Theorem 6.1 ([9]). There is an (O(1), O(logC)) bicriteria competitive algo-840

rithm for min-cost circuit routing, where C =
∑
e∈E ce is the total cost of edges.841

We note that this result also holds when we compare to the splittable optimal solution842

to min-cost circuit routing: the proof from [9] extends immediately by averaging over843

all the flow paths in the splittable optimum. Moreover, for the CapNDq problem844

(where all demands and capacities are q), the cost guarantees carry over directly from845

the min-cost circuit routing problem: so we obtain an (O(1), O(logC)) bicriteria846

competitive algorithm for CapNDq. We will refer to this algorithm as ACND.847

We can obtain an improved (O(1), O(logm)) bicriteria guarantee for CapNDq848

using a standard guess-and-double approach. At any point let B denote an upper849

bound on the optimal cost (initially this equals the minimum edge cost). Then, we850

simply ignore edges of cost more than B, and update the cost of any edge e with851

cost ce ≤ B/m to be equal to ĉe = B/m. Note that for the modified instance, all852

edge costs ĉ vary between B/m and B: so we may assume (by scaling) that the853

maximum edge cost is m, which implies that C ≤ m2. We then pass the modified854

instance to algorithm ACND and return its output. We double the guess B whenever855

algorithm ACND “fails”, i.e. either its cost exceeds O(1) ·B or the congestion exceeds856

O(logm). Whenever B is doubled, we run the algorithm from Theorem 6.1 on the857

entire input sequence again (this time with the new value of B). Note that this is still858

a valid online algorithm for CapNDq as we do not need to commit to routing paths in859

an online fashion. Clearly, the total cost incurred is O(1) times the optimal cost of860

CapNDq. By considering only the edges bought in the last run of the algorithm from861

Theorem 6.1, it is clear that there exists a routing for all requests with congestion862

O(logm). So we obtain:863

Lemma 6.2. There is an an (O(1), O(logm)) bicriteria competitive algorithm for864

uniform capacitated network design when all demands are at least q.865

We will refer to this algorithm as ACND.866

6.2. Online CapND. We now consider the general demands setting. As a first867

step, we split the instance into two sub-instances, one which handles all requests868

(si, ti, di) such that di ≥ q, and the other which handles the requests (si, ti, di) such869

that di < q. If we separately solve each of the sub-instances and combine them, the870

total cost and congestion would just add up. So this splitting only incurs a factor 2871

overhead. We can solve the first sub-instance (demands at least q) using algorithm872

ACND. For the remainder of this section, we assume that all demands are at most873

q. We handle this case by using our hallucination idea to randomly scale up some874

demands to integer multiples of q, after which we can use algorithm ACND.875
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Online CapND Algorithm when all demands at most q.
1. Constructing the Steiner backbone GS(i). Solve the online Steiner
forest instance on graph G = (V,E) with pairs {(si, ti)}ki=1 using the O(log k)-
competitive online algorithm from [12]. Let GS(i) ⊇ GS(i−1) denote the resulting
solution, maintained incrementally.
2. Constructing the Hallucination backbone GH(i). Request i ∈ [k] “hal-
lucinates” a demand of q ·Bi units, where Bi ∼ Binomial(di,

λ
q ) and λ = Θ(log k).

Let G̃ denote the network obtained from G by replacing each edge e ∈ E by
ρ = O(logm) many parallel “copies”, each of cost ce and capacity q. Feed the

hallucinated demand in network G̃ to the online algorithm ACND, which maintains
subgraph G̃H(i) incrementally. Let GH(i) denote the subgraph of G that contains

an edge e ∈ E if and only if G̃H(i) contains any copy of e.
3. Output. Return GS(i) ∪GH(i) as the final solution.

876

6.3. Analysis. The analysis proceeds along the same lines as in Section 3. We877

prove the following lemmas, the combination of which will prove Theorem 1.3.878

Lemma 6.3. The cost of the Steiner forest GS is at most O(log k) · Opt.879

Proof. Since the optimal solution supports a multicommodity flow between all880

the request pairs, it contains a Steiner forest connecting each si and ti. The lemma881

now follows as we use an O(log k)-competitive algorithm for Steiner forest [12].882

Lemma 6.4. With high probability, graph GH(k) has cost O(logm)Opt and can883

route all the hallucinated demands with edge congestion O(log2m).884

Proof. The proof is similar to that of Lemma 3.1, except that we now need to885

bound the maximum load on any edge as opposed to the total αth power of the886

loads. Consider the optimal CapND solution along with a splittable routing Si for887

each request i; note that the total load on any edge in this solution is at most q. Let888

O denote the following random routing: for each request i, sample Bi many si − ti889

paths from Si and send demand of q along each of these paths. We will show that O890

corresponds to a solution to the hallucinated CapND instance with cost at most Opt891

and congestion at most ρ = O(logm).892

Since we only use edges of the optimal CapND solution, the cost of edges used893

by O is at most Opt. Moreover, the load on any edge (under the routing O) is the894

sum of independent Bernoulli random variables (scaled by q) with mean at most895

λq = O(logm) · q. So a straightforward application of Chernoff bounds implies that896

the maximum load on any edge is at most O(logm) ·q with high probability. Consider897

now the following solution to the hallucinated CapND instance on network G̃. For all898

e ∈ E, if O sends θ · q flow through e then the solution contains θ copies of edge e.899

Therefore, the optimal value of the hallucinated CapND instance is at most ρ · Opt.900

Lemma 6.2 now implies that algorithm ACND obtains (with high probability)901

a solution to the hallucinated instance (in G̃) with cost O(ρ) · Opt and congestion902

O(logm). This translates to a solution in the original network G with cost O(logm) ·903

Opt and congestion O(ρ logm) = O(log2m).904

Lemma 6.5. With high probability, graph GS(k) ∪GH(k) can support routing all905

demands with congestion O(log2m).906

Proof. Much like the proof of Lemma 3.3, we consider a virtual graph B on vertices907

V with the following edges and capacities:908

• Steiner edges: each edge e ∈ GS(k) has capacity q̄e = λq.909
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• Hallucinated edges: for each i ∈ [k] edge (si, ti) has capacity equal to its910

hallucinated demand, i.e., q̄(si,ti) = q ·Bi.911

Using an argument identical to that of Lemma 3.3, we can show that the sparsity of B912

with respect to the original demands is at least λ = Ω(log k) with high probability. In913

this event, by using the flow-cut gap for multicommodity flows [34], we can conclude914

that the graph B can support a multicommodity flow on the original demands. Finally,915

since the hallucinated demands can be routed on GH with congestion O(log2m) (with916

high probability), the edges in GF = GS ∪GH can support a multicommodity flow of917

all requests with congestion O(log2m).918

Now, Lemmas 6.4 and 6.3 bound the cost of the solution, and Lemma 6.5 estab-919

lishes the congestion bounds. In particular, it follows that with probability 1 − k−3,920

the final solution GS(k) ∪ GH(k) has cost O(logm) · Opt and congestion O(log2m).921

This completes the proof of Theorem 1.3.922

7. Conclusion. In this paper, we considered the energy-efficient routing prob-923

lem with costs on edges. We obtained an O(logα k)-ratio approximation algorithm924

and an Õ(log3α+1 k)-ratio online algorithm, where α > 1 is the dynamic-power ex-925

ponent. While a poly-logarithmic approximation ratio is necessary, an interesting926

open question is to obtain an approximation ratio of the form g(α) · log k, where the927

poly-logarithmic factor is not exponential in α.928
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Appendix A. Waterfilling Algorithm Analysis.1023

Proof of Theorem 2.1. Our proof is essentially a direct adaptation of Theorem 4.21024
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in [10] for the online load balancing problem, to the online routing setting. For better1025

clarity in proof (and to closely mirror the proof of Theorem 4.2 [10]), we assume, for1026

the remainder of the proof, that all the scaling-factors ce of edges is 1. This is without1027

loss of generality as we can assume each edge e with scaling factor ce is sub-divided1028

into ce edges with unit scaling factor.1029

For the ith request, let PAi denote the path that the waterfilling algorithm chooses1030

to route the demand, and let P ∗i denote the flow path of the optimal solution. Sim-1031

ilarly, let `e(i) denote the load of edge e after routing the ith request, and let `∗e(i)1032

denote the load on edge e by using the optimal routing for the first i requests. Fi-1033

nally, let the overall instance have k requests which arrive online, so the final load on1034

any edge e is `e(k) using the algorithm’s routing, and is `∗e(k) by using the optimal1035

routing.1036

We use the following potential function Φ(i) =
∑
e `e(i)

α which tracks the total1037

dynamic power after routing the first i requests. Now, by the greedy nature of our1038

routing, note that1039

Φ(i+ 1)− Φ(i) ≤
∑
e∈P∗i

(`e(i) + di)
α − `e(i)α1040

≤
∑
e∈P∗i

(`e(k) + di)
α − `e(k)α1041

≤ di · α
∑
e∈P∗i

(`e(k) + di)
α−1

1042

≤ α · di
∑
e∈P∗i

(
c`e(k)α−1 +

(
di

(
α− 1

ln c
+ 1

))α−1
)
, for any c > 1.1043

Above, the first inequality follows from the greedy choice of our routing; the second1044

and third inequalities use the convexity of the dynamic power function (recall α > 1);1045

and the fourth is from Lemma 4.1 of [10]. We can choose c > 1 to optimize our final1046

competitive ratio. Now, summing over all i, we get1047

Φ(k) ≤ α · c ·
∑
e

`∗e(k)`e(k)α−1 + α

(
α− 1

ln c
+ 1

)α−1∑
e

∑
i : e∈P∗i

dαi1048

Next, we note that
∑
e

∑
i : e∈P∗i d

α
i ≤

∑
e(`
∗
e(k))α since α ≥ 1 and `∗e(k) =

∑
i : e∈P∗i di1049

by definition of `∗e(k). So by using this, and the fact that Φ(k) =
∑
e `e(k)α, we get1050

∑
e

`e(k)α ≤ α · c ·
∑
e

`∗e(k)`e(k)α−1 + α

(
α− 1

ln c
+ 1

)α−1∑
e

(`∗e(k))α1051

We can now use Holder’s inequality to get1052

∑
e

`e(k)α ≤ α · c ·
(∑

e

(`∗e(k))α

) 1
α
(∑

e

`e(k)α

)α−1
α

+ α

(
α− 1

ln c
+ 1

)α−1∑
e

(`∗e(k))α1053

Now, as in the proof of Theorem 4.2 in [10], if xα = (
∑
e `e(k)α)/(

∑
e(`
∗
e(k))α), then1054

xα ≤ α · c · xα−1 + α

(
α− 1

ln c
+ 1

)α−1

1055
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It is now easy to see that we can bound x by Θ(αα) by choosing c to be a large enough1056

constant. For example, with c = e (base of natural logarithm), xα ≤ eαxα−1 + αα,1057

i.e. x− αα

xα−1 ≤ eα, which implies x ≤ 2eα.1058

Appendix B. Probabilistic Inequalities.1059

Theorem B.1 ([35]). Let X1, X2, ..., XN be N independent random variables

such that Pr[Xi = 0] = 1 − pi and Pr[Xi = 1] = pi. Let Y =
∑N
i=1Xi and µ = EY .

Then for any δ > 0, it follows that

Pr
[
Y ≤ (1− δ)µ

]
≤ exp(−µδ2/2).

Theorem B.2 ([38, 28]). Let X1, X2, . . . , XN be independent non-negative ran-1060

dom variables. Let α > 1 and Kα = Θ(α/ logα). Then it is the case that1061 (
E[(
∑
i

Xi)
α]

)1/α

≤ Kα max

(∑
i

E[Xi],

(∑
i

E[Xα
i ]

)1/α
)
.1062

1063

Corollary B.3 ([11]). Let p ≥ 0, and let X1, X2, . . . , Xn be independent ran-1064

dom variables, each taking value D with probability min{1, p}. Then E[(
∑
iXi)

α] ≤1065

(Kα)α · (pN Dα + (pND)α), where Kα = Θ(α/ logα).1066

Proof. For the case when p ≥ 1, Xi = D with probability 1, and hence we can1067

conclude that E[(
∑
iXi)

α] = (ND)α. For the case when p ∈ [0, 1], E[Xi] = pD, and1068

E[Xα
i ] = pDα. From this we can conclude that the upper bound in Theorem B.2 is1069

Kα max(pND, (pN)1/αD). Taking αth powers and replacing the max by a sum, we1070

get E[(
∑
iXi)

α] ≤ (KαD)α((pN)α + pN).1071
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